Sodium batteries are one step closer to saving you from a mobile

first_img Sodium batteries are one step closer to saving you from a mobile phone fire Email Sodium, a fellow alkali metal, has similar chemical behavior and is far more abundant, so many research groups have crafted solid sodium batteries over the past decade. But the batteries, which use nonflammable solids to ferry sodium ions from one electrode to another, tend to break down quickly. In one common setup, during discharge, sodium atoms give up an electron at one electrode (the anode), creating an electric current that’s used to do work. The now positively charged sodium ions then move through an ion-ferrying sulfur-based electrolyte to the second electrode (known as a cathode), which is made of a ceramic oxide compound. When the ions arrive, the cathode swells in size. Then, when the battery is recharged, an applied electric voltage drives sodium ions out of the cathode, causing it to shrink. The ions go back to the anode, where they reunite with electrons. But the repeated swelling and shrinking can crack the brittle ceramic and cause it to detach from the solid electrolyte, killing the battery.To tackle this problem, researchers led by Yan Yao, a materials scientist at the University of Houston in Texas, created a cathode from a flexible organic compound containing sodium, carbon, and oxygen, they reported last year in Angewandte Chemie International Edition. The material’s flexibility allowed it to swell and shrink through 400 charging cycles without breaking apart and losing touch with the sulfur-based electrolyte. And the cathode stored 495 watt-hours per kilogram (Wh/kg), just slightly less than most conventional lithium-ion cathodes. But the researchers still had a problem. The sulfur-based electrolyte is somewhat fragile. And the sodium cells’ operating voltage tore apart the electrolyte.Yao’s team has now solved this issue by redesigning the cathode. As before, the researchers used a flexible organic compound. But each molecule of their new one, abbreviated PTO (for pyrene-4,5,9,10-tetraone), holds twice as many sodium ions as the previous version, enabling the battery to hold 587 Wh/kg, roughly on par with standard lithium-ion cathodes. Meanwhile, the cathode’s flexibility allows the battery to manage 500 charge and discharge cycles while retaining 89% of its storage potential, nearing the performance of conventional lithium-ion cells. As a bonus, the cell operates at a lower voltage, which keeps the electrolyte intact, the team reports today in Joule.If further durability improvements follow, the nonflammable battery could find many low-voltage uses, such as powering the next generation of wearable devices. But for voltage-hungry applications, such as electric cars, researchers will need to boost another parameter: the difference in electric potential (measured in voltage) between the two electrodes. Yan says his group is trying to tweak its organic electrode—adding fluorine, among other things—to do just that. Click to view the privacy policy. Required fields are indicated by an asterisk (*) Turtle Rock Scientific/Science Source Sign up for our daily newsletter Get more great content like this delivered right to you! Country Country * Afghanistan Aland Islands Albania Algeria Andorra Angola Anguilla Antarctica Antigua and Barbuda Argentina Armenia Aruba Australia Austria Azerbaijan Bahamas Bahrain Bangladesh Barbados Belarus Belgium Belize Benin Bermuda Bhutan Bolivia, Plurinational State of Bonaire, Sint Eustatius and Saba Bosnia and Herzegovina Botswana Bouvet Island Brazil British Indian Ocean Territory Brunei Darussalam Bulgaria Burkina Faso Burundi Cambodia Cameroon Canada Cape Verde Cayman Islands Central African Republic Chad Chile China Christmas Island Cocos (Keeling) Islands Colombia Comoros Congo Congo, the Democratic Republic of the Cook Islands Costa Rica Cote d’Ivoire Croatia Cuba Curaçao Cyprus Czech Republic Denmark Djibouti Dominica Dominican Republic Ecuador Egypt El Salvador Equatorial Guinea Eritrea Estonia Ethiopia Falkland Islands (Malvinas) Faroe Islands Fiji Finland France French Guiana French Polynesia French Southern Territories Gabon Gambia Georgia Germany Ghana Gibraltar Greece Greenland Grenada Guadeloupe Guatemala Guernsey Guinea Guinea-Bissau Guyana Haiti Heard Island and McDonald Islands Holy See (Vatican City State) Honduras Hungary Iceland India Indonesia Iran, Islamic Republic of Iraq Ireland Isle of Man Israel Italy Jamaica Japan Jersey Jordan Kazakhstan Kenya Kiribati Korea, Democratic People’s Republic of Korea, Republic of Kuwait Kyrgyzstan Lao People’s Democratic Republic Latvia Lebanon Lesotho Liberia Libyan Arab Jamahiriya Liechtenstein Lithuania Luxembourg Macao Macedonia, the former Yugoslav Republic of Madagascar Malawi Malaysia Maldives Mali Malta Martinique Mauritania Mauritius Mayotte Mexico Moldova, Republic of Monaco Mongolia Montenegro Montserrat Morocco Mozambique Myanmar Namibia Nauru Nepal Netherlands New Caledonia New Zealand Nicaragua Niger Nigeria Niue Norfolk Island Norway Oman Pakistan Palestine Panama Papua New Guinea Paraguay Peru Philippines Pitcairn Poland Portugal Qatar Reunion Romania Russian Federation Rwanda Saint Barthélemy Saint Helena, Ascension and Tristan da Cunha Saint Kitts and Nevis Saint Lucia Saint Martin (French part) Saint Pierre and Miquelon Saint Vincent and the Grenadines Samoa San Marino Sao Tome and Principe Saudi Arabia Senegal Serbia Seychelles Sierra Leone Singapore Sint Maarten (Dutch part) Slovakia Slovenia Solomon Islands Somalia South Africa South Georgia and the South Sandwich Islands South Sudan Spain Sri Lanka Sudan Suriname Svalbard and Jan Mayen Swaziland Sweden Switzerland Syrian Arab Republic Taiwan Tajikistan Tanzania, United Republic of Thailand Timor-Leste Togo Tokelau Tonga Trinidad and Tobago Tunisia Turkey Turkmenistan Turks and Caicos Islands Tuvalu Uganda Ukraine United Arab Emirates United Kingdom United States Uruguay Uzbekistan Vanuatu Venezuela, Bolivarian Republic of Vietnam Virgin Islands, British Wallis and Futuna Western Sahara Yemen Zambia Zimbabwe Solid-state batteries, which use solids instead of liquids to ferry ions through their core, are attracting billions in investment, thanks to their potential for reducing battery fires. Now, researchers have created a solid-state sodium battery with a record capacity to store charge and a flexible electrode that allows recharging hundreds of times. What’s more, the battery’s use of sodium instead of expensive lithium could enable the development of cheaper energy storage devices for everything from small wearable electronics to solar and wind farms.Maria Helena Braga, a battery researcher at the University of Texas in Austin, who was not involved with the work, says the electrode’s flexibility is particularly inventive. And even though the new batteries aren’t ready for commercialization, their potential for cheap production makes it likely that scientists will continue to pursue them, she says.Today, lithium-ion batteries are king, powering everything from our cellphones to our cars. But in rare, dramatic instances, their reliance on flammable liquid electrolytes has caused them to catch fire. Researchers are exploring lithium solid state batteries to address this problem. But that doesn’t address the cost. A recent analysis by Bloomberg New Energy Finance predicts that demand for lithium will explode, increasing 1500-fold by 2030. That could send lithium prices skyrocketing because the metal is mined in only a handful of countries. By Robert F. ServiceApr. 19, 2019 , 3:05 PMlast_img

Leave a Reply

Your email address will not be published. Required fields are marked *